PHYS 705: Classical Mechanics

More Motion of Rigid Bodies




Symmetric Top in an Uniform Gravity Field

We have been looking at motion of torque-free rigid bodies.

Now, we consider a rigid body under the influence of gravity so that U # 0
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Assumptions:

| - One point of the body remains fixed at the
origin O but it not necessary coincides with
the CM

- Again, we assume a symmetric top, i.e.,
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Symmetric Top in an Uniform Gravity Field

U: We can treat the potential energy U as if the rigid
% % body with all its mass M concentrated at the CM.

=» U= Mglcos®

- U =0 istakentobeat x,'=0 plane
- [ is the dist from the fixed point (O) to CM

T: With O being fixed (not moving) in

the fixed-frame and the body axes align

I’f
X1

L0
Line of nodes

with the Principal Axes,

T =T = 11,.503
2

total — T rot



Symmetric Top in an Uniform Gravity Field

To analyze the motion in the body frame, we can use the Euler’s egs:

Ild)l _(12 _]3)0)20)3 =N,
]2@2 _([3 _]1)(030)1 =N,

Lao,=N, < |I,=1,

The Euler’s equations provide a description for the
time evolution of (a)1 , 0y, (O, ) in the “body” axes

P =, but they are NOT necessary the most accessible

variables such as the generalized coords: (¢> 0,y )

X1

4
xq

—> Alternatively, we can use the Lagrangian

method to directly obtain EOM for (¢, 0, 74 )

L0
Line of nodes



Symmetric Top in an Uniform Gravity Field

We will write out the Lagrangian in terms of the generalized coordinates (the

three Eulers’ angles)

Again, we will align our body axes to coincide with the principal axes. I, =1,

x5
[
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1 L 5 AWEIPE.
T :5(110)12 + 1o} + o] ) = El(wl + @, )+E3a)3

dsiny sin @+ 6 cosy
Using © =| gcosy sin@—BOsiny
dcosO+yr

Y w. = ¢’ sin’ ysin® @+ 6’ cos’ y +2¢@sinyrsind cosy
L 2 — ¢* cos’  sin’ .2'2W
o R D ) =¢°cos’ wsin® @+6%sin’ y -2 cos

2 2 32 .2 12
w +w, =¢° sin”" 0 +6

.
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Symmetric Top in an Uniform Gravity Field

So, we have T :%(éz sin” 0+92)+I—2?’(¢50089+1/))2

=) | L=T-U-= (¢ sin 9+6’2) (¢COSH+W)2—MgZCOSH

_1
2

Immediately, notice that both @,¥ are cyclic !

This means that we immediately have the following

two constants of motion:

— =|[, (écos@ﬂﬂ):pw = const

2—;—1¢sm 0+ 1, (¢cosc9+t//)cos6? p; = const

Line;\fnodes :(]1 Sin29+13 C082 9)¢+I3 COS@W:pqﬁ




Symmetric Top in an Uniform Gravity Field

L does not depend on time explicit, so that the Jacobi integral h is another

constant of motion.

Also, since the description of the orientation of the rigid body using the Euler
angles (as the generalized coordinates) does not dep on t explicitly and U does
not depend on ¢, we should have h = E=const. Let check...

_.5_L_ NP o\, s -\
h_qﬁq' L L:5(¢ sin” 6+ 6 )+E(¢cosé’+w) — Mgl cos @

5—L.=119
ol
w-@@cos@ﬂu) a—¢—1151n 9¢+13(¢cosé?+w)cos<9



Symmetric Top in an Uniform Gravity Field

Substituting the partial derivatives of L into h, we have/—\
/_\

h:q.g_g_L:]192+]3(¢;C039+l/))¢/)+[11 sin29¢+13(¢cos9+W)cosH]¢

_%(éz sin? 9+92)_]_23(¢5c0s¢9+gﬂ)2 + Mgl cos b

=16 4—]3(¢5c0s6?+¢/))l/]+11 sin? 6 ¢ +13(¢cos0+W)cos9¢

:%]16.?2 +%[1 sin” @ ¢* +— 1. (¢COSH+W)2 + Mgl cos 6

:%]l(a)12+a)22)+%]3a)32+U=E J



Symmetric Top in an Uniform Gravity Field

Now, continue with our analysis of the motion of the symmetric top using the

Lagrangian: dsiny sin @+ O cosy

- , o =| gcosy sinf—Osiny
: : .
We have the quantity (¢ cos @+ w) equals to @, ! beosO+y

- so that the conservation of P, also implies @, being a constant.

Lo, =1, (¢fcos 0+ 1/)) =p,
For convenience later, we will rename this constant (RHS) as /,a,
Lo, =1a (1)
oT I,cos@g+ Ly =1a (2)



Symmetric Top in an Uniform Gravity Field

Similarly, we will rename the other constant P, to /.5 so that we have

(]1 sin® @+ I, cos’ 6’)¢5+13 cosOy =p,=1b 3)

e~ ' -
Now, solving for ¥ from Eq. (2), we have, []3 cosOp+ Ly =1, ]

. Ta-1,cos0d
g = e 15c050¢ (4)
13

Substituting this into Eq. (3), we then have,
(11 sin® @ + I, cos’ 9)¢+ COS 0([la — 1 cosé’é) =1b

The blue terms cancel and gives,

. b—acos0

/I{sin2¢9¢5+/(acosﬁz/(b — ¢

sin’ @



Symmetric Top in an Uniform Gravity Field

. Yyl : :IIa—I3COSQ¢
- Substituting this expression for ¢ into Eq. (4), we have, v I
., b—acos6 . b—acos@
=—a—cosf = .
v \ ( sin® @ j / sin® @

- So, using the two constants of motion for the problems, we have two

explicit 1t order ODEs for two of the Euler angles ¢,y in terms of 6.

- The next step is to try to write down an ODE for #using the energy

conservation equation, [ﬁ (62 + wz)] I
1 2

3 2
_a)3

2
E=T+U :%(&2 sin” 9+92)+%(¢COSQ+W)2 + Mgl cos 6

- Since we know both ¢f, i in terms of 6, this in fact is an ODE in donly.



Symmetric Top in an Uniform Gravity Field

- But, actually, there is a short-cut...

- Recall that ¢5cos 0+y = @, 1s a constant of the motion so that

1 L. :
E'EE—?”@2 :El(¢2 sin” 6?+6?2)+Mglcos€=const

- Now, we substitute in ¢’

5 - (b—acos@)
sin* &

. b—acosO)
—> E':£¢92+ 1, (b-acosd) S0 + Mgl cos @
2 2 sin”’@




Symmetric Top in an Uniform Gravity Field

- Rewriting this, we have the desired ODE for 6,

Ly v, (0
[ (b—acos8)’
V., (0)= 21( ey ) + Mgl cos@

- The direct method is to integrate this to get @ (t) Then, substitute it back
into the ODEs for ¢5, i and integrate to get ¢@ (t) , w( )



.

Symmetric Top in an Uniform Gravity Field

- A smarter alternative is to treat this as an effective 1D problem as we have

done for the central force problems in Chapter 3.

I b—acos6)
(6) Veﬁ(é'):zl( o~y ) + Mgl cos @

' / )2
E =516? +V,,

- Before we proceed further, it will be helpful to briefly describe the physical

meaning of the three Euler angles:

- 3'd Euler angle: ¥ = spin about the body’s symmetry axis

Y

- 1st Euler angle: ¢ = precession of the body’s symmetry axis

(have seen in
torque free case)

about the space x, ' (z)axis il
- ond Eyler angle: @ = nutation (bobbing up & down) of the body
symmetry axis (this is new)

- So, our effective 1D treatment will tell us about this new behavior (nutation) !



Precession and Nutation for a Symmetric Top

- Similar to the effective 1D central force problem in Chapter 3, we can get a

qualitative understanding of the system behavior by considering the geometric

shape of |/, " (9) and its relation to E’.

\ V., ()

- Hereisaplotof V/,, (6?) D —
(actual shape will depend on P24, P,, )

- Since we need 6% >0 , for a given value of
g

E’, the physically allowed motion must have,

Le—poy
2

7 (0)=0 i

- So, motion must remains within 6, <6< 6, )

(physically allowed region for E'= E,)



Precession and Nutation for a Symmetric Top

Overview:

off (‘9 ) 1. There is a minimum value of
E':Eo':Veﬁf(go)

for which there is only ONE allowed

value for @ = 0, (pure precession).

2. For larger valuesof £'> E,' such as
E! — E1 !
@ is bounded between 2 values:

6 <0<0,

This is the case of nutation. We will look at

these two situations closer next.



Precession for a Symmetric Top

Case1: =6 with E'=E,'=V,_(6)) @ minimum (no nutations)
- The body axis x, is tilted at a fixed value @ = g, wrt the fixed axis (no nutation)

- 6, can be determined by setting,

I (b-acos@Y
~0 [nﬁ(eﬁ;( 1o j+Mgzcos%

Sin

vV, (0)
do

=0,

- Evaluating the derivative of /. (€) and setting it to zero, we have,

; (b—acoseoj[sinHO(—a)(—sinHO)—(b—acos@o)cosﬁo
1

: )—Mglsin@ozo
sin 6,

sin” 6,

asin’ 6, —(b—acos 6, )cos b,

—Mglsinb, =0
sin” @, j & ’

Il(b—acosé’o)[



Precession for a Symmetric Top

Case 1: Continuing...

) _ _ \
Il(b—acosﬁo)[asm 6, —cos 6, (b—acos b))

SiIl3 90 )

—Mglsing, =0

I [a sin? @, (b—acosb,)—cosb, (b—acosb,) |- Mglsin’§, =0

-Let y =1, (b — 4 COS 90) , we can then write,

(cojs@ojyz —(azsin2 6’0)7/+Mglsin4 g,=0
1

- Solving for ¥, we then have,

al sin® 6, + \/(a[1 sin” 6, )2 —4cos 6, (IlMgl sin” 6’0)
2cos G,

7:



Precession for a Symmetric Top

Case 1:

al sin® 6, + \/(a]1 sin” 6, )2 —4cos 0, (IlMgl sin” 00)

7/:

2cos 6,
2
- Factoring out the common factor al, sin” 6, , we have,
2cos 6,
)= al sin® 6, 14 |y 4Mel 020s 0,
2cos 6, la

- Recall that y =/, (b —acos 0, ) and it must be a real number for physically
realizable situations and this allows us to make certain conclusions on the

solution 6,



Precession for a Symmetric Top

Two subcases:

Case 1a: 6, < /2 The tip of the top is above the

horizontal plane ( x, ' =0 in the fixed frame ).

- This means that cos§, >0 and for 7 to be real, we need to have

0 4Mgl COS (90 >0 )= al, sin’ 6, 1+ 4 Mgl cos 6,
- 742 2cos6, | La’
1

Recall that we have [,a = I,,. Substituting and rewriting, we have,

41 Mgl cos6
1>1r8 T = a)32£\/11Mglc086?0 =w*
([3503) 1

=  This means that in order to maintain a steady precession at a fixed

tilt 6, < 7/2, @, must be fast enough, i.e., @, > @ * (fast top)



Precession for a Symmetric Top [ ; sz@{ J 4Mg,w59]
= 0l 1x 1— 0

~ 2cos 6,

2
La

Case 1a: 0, < 7;/2

- Since the equation for ¥ is quadratic, there will be two solution for the

precession rate:

_b—acosf, V [7/:]1(1?_610086’0)]

. a
¢0$ o

. 2 B -2
sin” g, [, sin” g,

To simplify 7, we will assume @, to be large (fast top), then

\/1 41, Mgl cos b, 1 21 Mgl cos 6,

(L) (L)
= 5 - L, sin” 6, =) 21 Mgl cozs 0,
2cos 6, (Lo,)




Precession for a Symmetric Top

Lo,sin>6,| . 21 Mglcosé,
Vs = 13| 1- 2
Case 1a: g, < 7;/ 2 2cos ), (1))

( IR %sinz 90 Z[lMgZM _ [1 sin? HOMgl
) Z 9)8’90/ ( Lo, )Z Lo, [fast spinning]

*
+ o 5 sin” 6, ) 21, Mgl costl; _ 1o, sin” 6, top @, > @

L 2cos 6, B /@3 )2 cos 6,

(small compare to 2)

-

Mgl Slow precession : ..
| ’ I o ast spinning
—> ¢0$ - I SiI;L2 2] = ]30)3 [top Wy > o7
1 0 373 Fast precession
| 1, cos b,

(note: the fast precession is
independent of gravity g)



Precession for a Symmetric Top
Case 1b: §, > /2 The tip of the top is below the

horizontal plane ( x, ' =0 in the fixed frame ). Top is

supported by a point support (show).

X3

- Here cos6, <0 and 7 will always be real !

in’ 4Mgl|cos G
7:a11 sin” 6, 4 1_4Mglc205¢90 - Re 14 M8 ‘c;)s ) 50
2cos 6, La l,a

=) No special condition on @, .

With top started with initial condition &, > 7z/2 , it will remain

below the horizontal plane and precesses around the fixed axis x; '.



Nutation for a Symmetric Top

Case 2: ) <0 <0, General situation with £'> E '=V 7 (6,) - The body axis x,

will blob up and down as it precesses around the fixed axis x, ' (nutation).

b—acosf
sin” @

So, depending on a and b, ¢ might or might not change sign... and we have the

The precession rate of the body axis X, is described by: ¢ =

following three cases: (a and b are proportional to the 2 consts of motion: P, P,)

B Paths trace by the body
axis x, as it precesses
around the fixed axis x, '
(vertical).

b<a b=acosb,
(reversal possible) @ ( o, ) =0



Nutation for a Symmetric Top

b—acosf

The precession rate of the body axis X; is described by: ¢ = P
sin

b<a . 1
(reversal possible) ¢(91) =0

https://www.youtube.com/watch?v=5Sn2J1Vn4zU




—

Nutation for a Symmetric Top

The last situation actually corresponds to the typical situajtion when the
symmetric top is initially spinning about its body axis x, fixed at a given

direction @ = g, wrt to the fixed x; " axis. Then, the top is released.

- To be explicit, the initial conditions for this situation are:
6(0)=0,,$(0)=6(0)=0,and y #0
- We will continue to assume the fast top condition @, > @* so that 6 can

remain above the x,'=0 plane ( 6 < 7[/ 2).



Nutation for a Symmetric Top

- At t =0, these ICs implies that

E' E——a) (/sm/ ﬂ/)+MglcosH

E'=Mglcos b,

- At any subsequent time ¢ > 0, energy remains conserved and we need to have,

= Mgl cos 6, = %(¢2 sin” 6 + 92)+Mgl cos 6



Nutation for a Symmetric Top

|
Mgl cos 6, = %(W sin” 6 + 6’2)+Mgl cos 6

- Note that the KE terms (quadratic) on the RHS can’t never be negative

- So, as soon as ¢f, 0 begin to differ from their initial zero value,

- The potential energy term must decrease correspondingly

‘ cos @ < cos 90 (I”BCCI”O <@< 72'/2) ‘ G > 90 (top nutates down)
- The initial value 6, will also be the smallest 6 value ( 6, ) that it can have

(cusp of the curve).



Nutation for a Symmetric Top

- When released in this manner, the top always starts to fall and continues
to fall until it reaches the other turning point (£ ). Then, it will rise again

and repeat the cycle as it precesses around the fixed axis x, ' .

- We will now go further by estimating the range and frequency of this nutation

(for a fast top) in the following analysis.



Nutation for a Symmetric Top

In order to do that we will start with the energy equation again,

b—acosf

I (b—acos8)’ Recall: ¢=— 3
1( 6.12 ) + Mgl cos 6 sin” 6
2 sin” @

pr=tige,
2

Rescaling our energies: o =2FE'/I, and f =2Mgl/I,, we have,

., (b—acosd)
a:¢92+( Sciznczog ) + fcosd

Then, defining a new variable u = cos &, we can transform the equation into ...

i’ :(1—1/12)(05—,Bu)—(b—au)2



Nutation for a Symmetric Top

In order to do that we will start with the energy equation again,

b—acosf

I (b—acos8)’ Recall: ¢=— 3
1( — ) + Mgl cos 6 sin” 6
2 sin” @

pr=tige,
2

Rescaling our energies: o =2FE'/I, and f =2Mgl/I,, we have,

., (b—acosd)
a:¢92+( Sciznczog ) + fcosd

Then, defining a new variable u = cos &, we can transform the equation into ...

i’ :(1—1/12)(05—,Bu)—(b—au)2

quick check...



Nutation for a Symmetric Top

With u =cos @, we have the following relations,

. . . . U - 29 2
u=sinfdld — 060=— sin“ € =1-u
sin &
2
o . , . ., (b—acos0)
Substituting them into our previous equation: o =6° + —y: + fcosf
sin
) 2
i b—au
o= - = ( 2) + fu
l—u l—u
. 2
0 — (b — au)
o= fu= 1—1/> Note: the four constants of motion:
a—E' a—p,

2

z}tzz(l—uz)(a—ﬂu)—(b—au) B—>Mg b-p,




Nutation for a Symmetric Top

Now, with our initial conditions with the top spinning at 8 = 6, < — (as a fast

top, i.e.,), @, > @ *we would like to estimate the range of nutation.

With our initial conditions: §(0)=6,,#(0)=6(0)=0, and y = 0

~$(0)= b—.aczzosﬁo =0 — |b=auy,

=) — sin” 6,
_¢(0)=0(0)=0 — E'=Mglcos, — |a=pu,

L T a=2E"1
[E = 26’ + 2¢ +Mglcos€] [,B=2Mgl/11




Nutation for a Symmetric Top

With the energy conservation equation:

0’ :(1—1,12)(05—,Bu)—(b—au)2

Substitute in b = au,and o = Bu,(ICs) into the above equation, we have,
i’ = (1—u2)(,8u0 — pu)—(au, —au)
:(l—uz),b'(uo—u)—axz(uo—u)2 U = cosd
u’ = (uo — u)[ﬂ(l —u’ ) —a’ (uo — u)] = f(u) [ Governing eq for nutations ]
For turning points (equilibrium points), the RHS f (u) must equal to zero. We
already know u =u, is asolution (our IC). The other solution u, must come from
2 2
(1 —u’ ) —%(uo — u) =0 specifically, (1 —u’ ) —%(uo —u,)=0

2




Nutation for a Symmetric Top

Now, adding and subtracting u02 and 2uu, , we can rewrite the previous eq,

2
A

2 2 2 2
U, —21/101/11—(1—u1 )+—(u0—u1)—2u0 +2uu, +u,” =0

x 5
a2

2 2 2 2
u,” —2uu, +u, —1+—(u0—u1)—2u0 +2ugu, +u,” =0



Nutation for a Symmetric Top

Now, adding and subtracting u02 and 2uu, , we can rewrite the previous eq,

2
A

2 2 2 2
U, —21/101/11—(1—u1 )+—(u0—u1)—2u0 +2uu, +u,” =0

x 5
a2

2 2 2 2
u,” —2uu, +u, —1+—(u0—u1)—2u0 +2ugu, +u,” =0

2
a

(uo—u1)2 + 7 (uo —ul)—2u0 (uo—ul)—(l—uoz) 0

0

(uy—1,)’ +[%—2u0](u0 ~u)~(1-u,?)



e

Nutation for a Symmetric Top

—~

Defining x =u,—uand Xx =u,—u, asthe (max) range of nutation,

2

(g —11,)’ {%

_ 2%)(”0 —u, ) _ (1 —uoz) = () can be written as,

By solving the above quadratic equation for X , we can get an estimate for the

max range of the nutation.



Nutation for a “Fast” Top

2
Now, applying the “fast” top condition, @, > I—\/ I MglcosO, =w*

3

or %([3603 )2 > [ Mgl cos 6, (KEM > PE )

gravity

For an initially small tilt\cos §, =1 or 8, = ("), this condition implies that

2 2
a | L)L 5 — a——2c05¢90;a—
g\ 1 )2Mgl P P

T

a=IlLo/l
p=2Mgl/1,




Nutation for a “Fast” Top

Now back to the equation for the max range of nutation x ,
a2
X’ +(;—20056’0)£—Sin2 g,=0

2 2
a

Assuming 5 to be small and dropping the x° term and with % —2cos 0, = —

P

a’ a’
)?2+(——2c03¢90))?—sin290 ~—x-sin’g, =0
p P

- : 21 Mgl .
=) | X= ﬁzsln2 = g2l sin® 6, (%)
¢ (1;0,)




Nutation for a “Fast” Top

21 Mgl .
L2_sin” 6,

X =
(13a)3)

From this solution, we can conclude that the maximum range of nutation will

in general decrease as

Thus, the faster the top spun, the less is the nutation !



—_—

Frequency of Nutation for a “Fast” Top

For a “fast” top, we can also estimate the frequency of its nutation...

As, we have seen for a fast top, when @, is large and the range of nutation x is
small so that # =cosf@ =cosb, =u, :

=) l1-u’=1-u=1-cos’f, =sin’0,

a

/\/

=) ,B( 2) Bsin® 0, = a’x

Also, using our expression for x for a “fast” top, Eq. (¥), ( X = p sin’ eoj




Frequency of Nutation for a “Fast” Top

Substituting /3 (1 —u’ ) =~ q’x into our expression for f (u) , and converting u

into x , i.e., X =u, —u, we have,

fu) = =(uy—u)| p1=u)~a (u, )]




Frequency of Nutation for a “Fast” Top

Upon differentiation , this differential equation reads,

d =2
dt{y =da [ Y +_H —> 2yy——a2(2yj/)

Simplifying, we immediately get our desired result

y=-a'y

This describes a harmonic motion for the nutation as measured with respect to

the mid-point of its range and the frequency of oscillation is,

Vi
a:]—ja)3(=pw)

So, the frequency of nutation is faster if the top is spun faster initially (603 T) :




