PHYS 705: Classical Mechanics

More Motion of Rigid Bodies

We have been looking at motion of torque-free rigid bodies.

Now, we consider a rigid body under the influence of gravity so that $U \neq 0$

Assumptions:

- One point of the body remains fixed at the origin *O* but it not necessary coincides with the *CM*
- Again, we assume a symmetric top, i.e.,

$$I_1 = I_2 \neq I_3$$

U: We can treat the potential energy *U* as if the rigid body with all its mass *M* concentrated at the *CM*.

$$\longrightarrow U = Mgl\cos\theta$$

- U = 0 is taken to be at $x_3' = 0$ plane
- *l* is the dist from the fixed point (*O*) to *CM*

T: With *O* being fixed (not moving) in the fixed-frame and the body axes align with the Principal Axes,

$$T_{total} = T_{rot} = \frac{1}{2}I_i\omega_i^2$$

To analyze the motion in the body frame, we can use the Euler's eqs:

$$I_{1}\dot{\omega}_{1} - (I_{2} - I_{3})\omega_{2}\omega_{3} = N_{1}$$

$$I_{2}\dot{\omega}_{2} - (I_{3} - I_{1})\omega_{3}\omega_{1} = N_{2}$$

$$I_{3}\dot{\omega}_{3} = N_{3} \longleftarrow I_{1} = I_{2}$$

The Euler's equations provide a description for the time evolution of $(\omega_1, \omega_2, \omega_3)$ in the "body" axes but they are NOT necessary the most accessible variables such as the generalized coords: (ϕ, θ, ψ)

 \rightarrow Alternatively, we can use the Lagrangian method to directly obtain EOM for $(\dot{\phi}, \dot{\theta}, \dot{\psi})$

We will write out the Lagrangian in terms of the generalized coordinates (the three Eulers' angles)

Again, we will align our body axes to coincide with the principal axes.

$$T = \frac{1}{2} \left(I_1 \omega_1^2 + I_2 \omega_2^2 + I_3 \omega_3^2 \right) = \frac{I_1}{2} \left(\omega_1^2 + \omega_2^2 \right) + \frac{I_3}{2} \omega_3^2$$
Using $\mathbf{\omega} = \begin{bmatrix} \dot{\phi} \sin \psi \sin \theta + \dot{\theta} \cos \psi \\ \dot{\phi} \cos \psi \sin \theta - \dot{\theta} \sin \psi \\ \dot{\phi} \cos \theta + \dot{\psi} \end{bmatrix}$

$$\omega_1^2 = \dot{\phi}^2 \sin^2 \psi \sin^2 \theta + \dot{\theta}^2 \cos^2 \psi + 2\dot{\phi}\dot{\theta}\sin \psi \sin \theta \cos \psi$$

$$\oplus \omega_2^2 = \dot{\phi}^2 \cos^2 \psi \sin^2 \theta + \dot{\theta}^2 \sin^2 \psi - 2\dot{\phi}\dot{\theta}\sin\psi \sin\theta \cos\psi$$

$$\omega_1^2 + \omega_2^2 = \dot{\phi}^2 \sin^2 \theta + \dot{\theta}^2$$

So, we have
$$T = \frac{I_1}{2} \left(\dot{\phi}^2 \sin^2 \theta + \dot{\theta}^2 \right) + \frac{I_3}{2} \left(\dot{\phi} \cos \theta + \dot{\psi} \right)^2$$

$$L = T - U = \frac{I_1}{2} \left(\dot{\phi}^2 \sin^2 \theta + \dot{\theta}^2 \right) + \frac{I_3}{2} \left(\dot{\phi} \cos \theta + \dot{\psi} \right)^2 - Mgl \cos \theta$$

Immediately, notice that both ϕ, ψ are cyclic!

This means that we immediately have the following two constants of motion:

$$\frac{\partial L}{\partial \dot{\psi}} = I_3 \left(\dot{\phi} \cos \theta + \dot{\psi} \right) = p_{\psi} = const$$

$$\frac{\partial L}{\partial \dot{\phi}} = I_1 \dot{\phi} \sin^2 \theta + I_3 \left(\dot{\phi} \cos \theta + \dot{\psi} \right) \cos \theta = p_{\phi} = const$$
$$= \left(I_1 \sin^2 \theta + I_3 \cos^2 \theta \right) \dot{\phi} + I_3 \cos \theta \dot{\psi} = p_{\phi}$$

L does not depend on time explicit, so that the Jacobi integral h is another constant of motion.

Also, since the description of the orientation of the rigid body using the Euler angles (as the generalized coordinates) does not dep on t explicitly and U does not depend on \dot{q} , we should have h = E = const. Let check...

$$\begin{split} & \boldsymbol{h} = \dot{q} \frac{\partial L}{\partial \dot{q}} - L \qquad L = \frac{I_1}{2} \left(\dot{\phi}^2 \sin^2 \theta + \dot{\theta}^2 \right) + \frac{I_3}{2} \left(\dot{\phi} \cos \theta + \dot{\psi} \right)^2 - Mgl \cos \theta \\ & \frac{\partial L}{\partial \dot{\theta}} = I_1 \dot{\theta} \\ & \frac{\partial L}{\partial \dot{\psi}} = I_3 \left(\dot{\phi} \cos \theta + \dot{\psi} \right) \qquad \qquad \frac{\partial L}{\partial \dot{\phi}} = I_1 \sin^2 \theta \, \dot{\phi} + I_3 \left(\dot{\phi} \cos \theta + \dot{\psi} \right) \cos \theta \end{split}$$

Substituting the partial derivatives of L into h, we have

$$\begin{split} h &= \dot{q} \frac{\partial L}{\partial \dot{q}} - L = I_1 \dot{\theta}^2 + I_3 \left(\dot{\phi} \cos \theta + \dot{\psi} \right) \dot{\psi} + \left[I_1 \sin^2 \theta \, \dot{\phi} + I_3 \left(\dot{\phi} \cos \theta + \dot{\psi} \right) \cos \theta \right] \dot{\phi} \\ &- \frac{I_1}{2} \left(\dot{\phi}^2 \sin^2 \theta + \dot{\theta}^2 \right) - \frac{I_3}{2} \left(\dot{\phi} \cos \theta + \dot{\psi} \right)^2 + Mgl \cos \theta \\ &= I_1 \dot{\theta}^2 + I_3 \left(\dot{\phi} \cos \theta + \dot{\psi} \right) \dot{\psi} + I_1 \sin^2 \theta \, \dot{\phi}^2 + I_3 \left(\dot{\phi} \cos \theta + \dot{\psi} \right) \cos \theta \, \dot{\phi} \\ &- \frac{I_1}{2} \dot{\theta}^2 - \frac{I_1}{2} \dot{\phi}^2 \sin^2 \theta - \frac{I_3}{2} \left(\dot{\phi} \cos \theta + \dot{\psi} \right)^2 + Mgl \cos \theta \\ &= \frac{1}{2} I_1 \dot{\theta}^2 + \frac{1}{2} I_1 \sin^2 \theta \, \dot{\phi}^2 + \frac{1}{2} I_3 \left(\dot{\phi} \cos \theta + \dot{\psi} \right)^2 + Mgl \cos \theta \\ &= \frac{1}{2} I_1 \left(\omega_1^2 + \omega_2^2 \right) + \frac{1}{2} I_3 \omega_3^2 + U = E \end{split}$$

Now, continue with our analysis of the motion of the symmetric top using the

Lagrangian:

We have the quantity $(\dot{\phi}\cos\theta + \dot{\psi})$ equals to ω_3 !

$$\mathbf{\omega} = \begin{pmatrix} \dot{\phi} \sin \psi \sin \theta + \dot{\theta} \cos \psi \\ \dot{\phi} \cos \psi \sin \theta - \dot{\theta} \sin \psi \\ \dot{\phi} \cos \theta + \dot{\psi} \end{pmatrix}$$

 \rightarrow so that the conservation of P_{ψ} also implies ω_3 being a constant.

$$I_3 \omega_3 = I_3 \left(\dot{\phi} \cos \theta + \dot{\psi} \right) = p_{\psi}$$

For convenience later, we will rename this constant (RHS) as I_1a ,

$$I_3 \omega_3 = I_1 a \tag{1}$$

or
$$I_3 \cos \theta \, \dot{\phi} + I_3 \dot{\psi} = \underline{I_1} a \tag{2}$$

Similarly, we will rename the other constant P_{ϕ} to I_1b so that we have

$$(I_1 \sin^2 \theta + I_3 \cos^2 \theta) \dot{\phi} + I_3 \cos \theta \dot{\psi} = p_{\phi} = I_1 b$$
 (3)

Now, solving for $\dot{\psi}$ from Eq. (2), we have, $I_3 \cos \theta \dot{\phi} + I_3 \dot{\psi} = I_1 a$

$$\dot{\psi} = \frac{I_1 a - I_3 \cos \theta \,\dot{\phi}}{I_3} \tag{4}$$

Substituting this into Eq. (3), we then have,

$$(I_1 \sin^2 \theta + I_3 \cos^2 \theta) \dot{\phi} + \cos \theta (I_1 a - I_3 \cos \theta \dot{\phi}) = I_1 b$$

The blue terms cancel and gives,

$$\int_{1}^{2} \sin^{2}\theta \,\dot{\phi} + \int_{1}^{2} a \cos\theta = \int_{1}^{2} b \qquad \Longrightarrow \qquad \dot{\phi} = \frac{b - a \cos\theta}{\sin^{2}\theta}$$

- Substituting this expression for $\dot{\phi}$ into Eq. (4), we have,

$$\dot{\psi} = \frac{I_1 a - I_3 \cos \theta \, \dot{\phi}}{I_3}$$

$$|\dot{\psi} = \frac{I_1}{I_3} a - \cos\theta \left(\frac{b - a\cos\theta}{\sin^2\theta} \right)$$

$$\dot{\phi} = \frac{b - a\cos\theta}{\sin^2\theta}$$

- So, using the two constants of motion for the problems, we have two explicit 1st order ODEs for two of the Euler angles ϕ, ψ in terms of θ .
- The next step is to try to write down an ODE for θ using the energy conservation equation, $\underbrace{\frac{I_1}{2}(\omega_1^2+\omega_2^2)}$ $\underbrace{\frac{I_3}{2}\omega_3^2}$

$$E = T + U = \frac{I_1}{2} \left(\dot{\phi}^2 \sin^2 \theta + \dot{\theta}^2 \right) + \frac{I_3}{2} \left(\dot{\phi} \cos \theta + \dot{\psi} \right)^2 + Mgl \cos \theta$$

- Since we know both $\dot{\phi}, \dot{\psi}$ in terms of θ , this in fact is an ODE in θ only.

- But, actually, there is a short-cut...
- Recall that $\dot{\phi}\cos\theta + \dot{\psi} = \omega_3$ is a constant of the motion so that

$$E' \equiv E - \frac{I_3}{2} \omega_3^2 = \frac{I_1}{2} (\dot{\phi}^2 \sin^2 \theta + \dot{\theta}^2) + Mgl \cos \theta = const$$

- Now, we substitute in $\dot{\phi}^2$

$$\dot{\phi}^2 = \frac{\left(b - a\cos\theta\right)^2}{\sin^4\theta}$$

$$E' = \frac{I_1}{2}\dot{\theta}^2 + \left(\frac{I_1}{2}\frac{\left(b - a\cos\theta\right)^2}{\sin^{42}\theta}\sin^{2}\theta + Mgl\cos\theta\right)$$

- Rewriting this, we have the desired ODE for θ ,

$$\frac{I_1}{2}\dot{\theta}^2 = E' - V_{eff}(\theta)$$

$$V_{eff}(\theta) = \frac{I_1}{2} \frac{(b - a\cos\theta)^2}{\sin^2\theta} + Mgl\cos\theta$$

- The direct method is to integrate this to get $\theta(t)$. Then, substitute it back into the ODEs for $\dot{\phi}, \dot{\psi}$ and integrate to get $\phi(t), \psi(t)$.

- A smarter alternative is to treat this as an effective 1D problem as we have done for the central force problems in Chapter 3.

$$E' = \frac{I_1}{2}\dot{\theta}^2 + V_{eff}(\theta) \qquad V_{eff}(\theta) = \frac{I_1}{2}\frac{(b - a\cos\theta)^2}{\sin^2\theta} + Mgl\cos\theta$$

- Before we proceed further, it will be helpful to briefly describe the physical meaning of the three Euler angles:
 - $3^{\rm rd}$ Euler angle: $\dot{\psi} = {\rm spin}$ about the body's symmetry axis
 - 1st Euler angle: $\dot{\phi}$ = precession of the body's symmetry axis about the space x_3 ' ($\hat{\mathbf{z}}$)axis
 - 2nd Euler angle: $\dot{\theta}$ = nutation (bobbing up & down) of the body symmetry axis (this is new)
- So, our effective 1D treatment will tell us about this new behavior (nutation)!

(have seen in torque free case)

Precession and Nutation for a Symmetric Top

- Similar to the effective 1D central force problem in Chapter 3, we can get a qualitative understanding of the system behavior by considering the geometric

shape of $V_{eff}\left(\theta\right)$ and its relation to E'.

- Here is a plot of $V_{e\!f\!f}\left(\theta\right)$: (actual shape will depend on P_{ϕ}, P_{ψ})
- Since we need $\dot{\theta}^2 \ge 0$, for a given value of E, the physically allowed motion must have,

$$\frac{I_1}{2}\dot{\theta}^2 = E' - V_{eff}(\theta) \ge 0$$

- So, motion must remains within $\theta_1 \le \theta \le \theta_2$)

(physically allowed region for $E' = E'_1$)

Precession and Nutation for a Symmetric Top

Overview:

1. There is a minimum value of

$$E' = E_0' = V_{eff}(\theta_0)$$

for which there is only ONE allowed value for $\theta = \theta_0$ (pure precession).

2. For larger values of $E' > E_0'$ such as

$$E' = E_1'$$

 θ is bounded between 2 values:

$$\theta_1 \le \theta \le \theta_2$$

This is the case of nutation. We will look at these two situations closer next.

Case 1: $\theta = \theta_0$ with $E' = E_0' = V_{eff}(\theta_0)$ @ minimum (no nutations)

- The body axis x_3 is tilted at a fixed value $\theta = \theta_0$ wrt the fixed axis (no nutation)
- θ_0 can be determined by setting,

$$\left. \frac{dV_{eff}(\theta)}{d\theta} \right|_{\theta=\theta_{o}} = 0 \qquad \left[V_{eff}(\theta) = \frac{I_{1}}{2} \left(\frac{b - a \cos \theta}{\sin \theta} \right)^{2} + Mgl \cos \theta \right]$$

- Evaluating the derivative of $V_{\it eff}(\theta)$ and setting it to zero, we have,

$$I_{1}\left(\frac{b-a\cos\theta_{0}}{\sin\theta_{0}}\right)\left(\frac{\sin\theta_{0}(-a)(-\sin\theta_{0})-\left(b-a\cos\theta_{0}\right)\cos\theta_{0}}{\sin^{2}\theta_{0}}\right)-Mgl\sin\theta_{0}=0$$

$$I_1(b-a\cos\theta_0)\left(\frac{a\sin^2\theta_0 - (b-a\cos\theta_0)\cos\theta_0}{\sin^3\theta_0}\right) - Mgl\sin\theta_0 = 0$$

Case 1: Continuing...

$$I_{1}\left(b-a\cos\theta_{0}\right)\left(\frac{a\sin^{2}\theta_{0}-\cos\theta_{0}\left(b-a\cos\theta_{0}\right)}{\sin^{3}\theta_{0}}\right)-Mgl\sin\theta_{0}=0$$

$$I_{1}\left[a\sin^{2}\theta_{0}\left(b-a\cos\theta_{0}\right)-\cos\theta_{0}\left(b-a\cos\theta_{0}\right)^{2}\right]-Mgl\sin^{4}\theta_{0}=0$$

- Let $\gamma = I_1(b - a\cos\theta_0)$, we can then write,

$$\left(\frac{\cos\theta_0}{I_1}\right)\gamma^2 - \left(a\sin^2\theta_0\right)\gamma + Mgl\sin^4\theta_0 = 0$$

- Solving for γ , we then have,

$$\gamma = \frac{aI_1 \sin^2 \theta_0 \pm \sqrt{\left(aI_1 \sin^2 \theta_0\right)^2 - 4\cos \theta_0 \left(I_1 Mgl \sin^4 \theta_0\right)}}{2\cos \theta_0}$$

Case 1:

$$\gamma = \frac{aI_1 \sin^2 \theta_0 \pm \sqrt{\left(aI_1 \sin^2 \theta_0\right)^2 - 4\cos \theta_0 \left(I_1 Mgl \sin^4 \theta_0\right)}}{2\cos \theta_0}$$

- Factoring out the common factor $\frac{aI_1\sin^2\theta_0}{2\cos\theta_0}$, we have,

$$\gamma = \frac{aI_1 \sin^2 \theta_0}{2 \cos \theta_0} \left[1 \pm \sqrt{1 - \frac{4Mgl \cos \theta_0}{I_1 a^2}} \right]$$

- Recall that $\gamma=I_1\big(b-a\cos\theta_0\big)$ and it must be a real number for physically realizable situations and this allows us to make certain conclusions on the solution θ_0

Two subcases:

Case 1a: $\theta_0 < \pi/2$ The tip of the top is above the horizontal plane ($x_3' = 0$ in the fixed frame).

 \rightarrow This means that $\cos \theta_0 > 0$ and for γ to be real, we need to have

$$1 - \frac{4Mgl\cos\theta_0}{I_1a^2} \ge 0 \qquad \left(\gamma = \frac{aI_1\sin^2\theta_0}{2\cos\theta_0} \left[1 \pm \sqrt{1 - \frac{4Mgl\cos\theta_0}{I_1a^2}}\right]\right)$$

Recall that we have $I_1a = I_3\omega_3$. Substituting and rewriting, we have,

$$1 \ge \frac{4I_1 Mgl\cos\theta_0}{\left(I_3\omega_3\right)^2} \qquad \Longrightarrow \qquad \omega_3 \ge \frac{2}{I_3} \sqrt{I_1 Mgl\cos\theta_0} = \omega^*$$

This means that in order to maintain a steady precession at a *fixed* tilt $\theta_0 < \pi/2$, ω_3 must be fast enough, i.e., $\omega_3 \gg \omega^*$ (fast top)

Case 1a: $\theta_0 < \pi/2$

$$\left(\gamma_{\mp} = \frac{aI_1 \sin^2 \theta_0}{2 \cos \theta_0} \left[1 \mp \sqrt{1 - \frac{4Mgl \cos \theta_0}{I_1 a^2}} \right]$$

- Since the equation for γ is quadratic, there will be two solution for the precession rate:

$$\dot{\phi}_{0\mp} = \frac{b - a\cos\theta_0}{\sin^2\theta_0} = \frac{\gamma_{\mp}}{I_1\sin^2\theta_0}$$

To simplify γ , we will assume ω_3 to be large (fast top), then

$$\sqrt{1 - \frac{4I_1 Mgl \cos \theta_0}{\left(I_3 \omega_3\right)^2}} \simeq 1 - \frac{2I_1 Mgl \cos \theta_0}{\left(I_3 \omega_3\right)^2}$$

$$\gamma_{\mp} = \frac{I_3 \omega_3 \sin^2 \theta_0}{2 \cos \theta_0} \left[1 \mp \left(1 - \frac{2I_1 Mgl \cos \theta_0}{\left(I_3 \omega_3 \right)^2} \right) \right]$$

Case 1a: $\theta_0 < \pi/2$

$$\gamma_{\mp} = \frac{I_3 \omega_3 \sin^2 \theta_0}{2 \cos \theta_0} \left[1 \mp \left(1 - \frac{2I_1 Mgl \cos \theta_0}{\left(I_3 \omega_3 \right)^2} \right) \right]$$

$$\gamma_{\mp} = \begin{cases} - \rightarrow \frac{I_3 \omega_3 \sin^2 \theta_0}{2 \cos \theta_0} \frac{2 I_1 Mgl \cos \theta_0}{(I_3 \omega_3)^2} = \frac{I_1 \sin^2 \theta_0 Mgl}{I_3 \omega_3} \\ + \rightarrow \frac{I_3 \omega_3 \sin^2 \theta_0}{2 \cos \theta_0} \left(2 - \frac{2 I_1 Mgl \cos \theta_0}{(I_3 \omega_3)^2} \right) = \frac{I_3 \omega_3 \sin^2 \theta_0}{\cos \theta_0} \end{cases}$$
fast spinning top $\omega_3 \gg \omega^*$

(small compare to 2)

$$\dot{\phi}_{0\mp} = \frac{\gamma_{\mp}}{I_1 \sin^2 \theta_0} = \begin{cases} \frac{Mgl}{I_3 \omega_3} & \text{Slow precession} \\ \frac{I_3 \omega_3}{I_1 \cos \theta_0} & \text{Fast precession} \\ & \text{(note: the fast precession)} \end{cases}$$

fast spinning top $\omega_3 \gg \omega^*$

(note: the fast precession is independent of gravity g)

Case 1b: $\theta_0 > \pi/2$ The tip of the top is below the horizontal plane ($x_3' = 0$ in the fixed frame). Top is supported by a point support (show).

 \rightarrow Here $\cos \theta_0 < 0$ and γ will always be real!

$$\gamma = \frac{aI_1 \sin^2 \theta_0}{2 \cos \theta_0} \left[1 \pm \sqrt{1 - \frac{4Mgl \cos \theta_0}{I_1 a^2}} \right] \in \text{Re} \qquad \left[1 + \frac{4Mgl \left| \cos \theta_0 \right|}{I_1 a^2} > 0 \right]$$

$$1 + \frac{4Mgl\left|\cos\theta_0\right|}{I_1a^2} > 0$$

No special condition on ω_3 .

With top started with initial condition $\theta_0 > \pi/2$, it will remain below the horizontal plane and precesses around the fixed axis x_3 .

Case 2: $\theta_1 \le \theta \le \theta_2$ General situation with $E' > E_0' = V_{eff}(\theta_0)$. The body axis x_3 will blob up and down as it precesses around the fixed axis x_3 ' (nutation).

The precession rate of the body axis x_3 is described by: $\dot{\phi} = \frac{b - a \cos \theta}{\sin^2 \theta}$

So, depending on a and b, ϕ might or might not change sign... and we have the following three cases: (a and b are proportional to the 2 consts of motion: p_{ψ} , p_{ϕ})

The precession rate of the body axis x_3 is described by: $\dot{\phi} = \frac{b - a \cos \theta}{\sin^2 \theta}$

https://www.youtube.com/watch?v=5Sn2J1Vn4zU

The last situation actually corresponds to the typical situation when the symmetric top is initially spinning about its body axis x_3 fixed at a given direction $\theta = \theta_0$ wrt to the fixed x_3 ' axis. Then, the top is released.

- To be explicit, the initial conditions for this situation are:

$$\theta(0) = \theta_0, \dot{\phi}(0) = \dot{\theta}(0) = 0$$
, and $\dot{\psi} \neq 0$

- We will continue to assume the fast top condition $\omega_3 \gg \omega^*$ so that θ can remain above the $x_3' = 0$ plane ($\theta < \pi/2$).

- At t = 0, these ICs implies that

$$E' = E - \frac{I_3}{2} \omega_3^2 = \frac{I_1}{2} \left(\dot{\phi}^2 \sin^2 \theta_0 + \dot{\theta}^2 \right) + Mgl \cos \theta_0$$

$$E' = Mgl\cos\theta_0$$

- At any subsequent time t > 0, energy remains conserved and we need to have,

$$E' = Mgl\cos\theta_0 = \frac{I_1}{2} (\dot{\phi}^2 \sin^2\theta + \dot{\theta}^2) + Mgl\cos\theta$$

- Note that the KE terms (quadratic) on the RHS can't never be negative
- So, as soon as $\dot{\phi}, \dot{\theta}$ begin to differ from their initial zero value,
 - → The potential energy term must decrease correspondingly

$$\implies$$
 $\cos \theta < \cos \theta_0 \left(recall \ 0 \le \theta \le \pi/2 \right) \implies \theta > \theta_0 \quad \text{(top nutates down)}$

 \rightarrow The initial value θ_0 will also be the smallest θ value (θ_2) that it can have (cusp of the curve).

- \rightarrow When released in this manner, the top always starts to fall and continues to fall until it reaches the other turning point (θ_1). Then, it will rise again and repeat the cycle as it precesses around the fixed axis x_3 .
- We will now go further by estimating the range and frequency of this nutation (for a fast top) in the following analysis.

In order to do that we will start with the energy equation again,

$$E' = \frac{I_1}{2}\dot{\theta}^2 + \frac{I_1}{2}\frac{(b - a\cos\theta)^2}{\sin^2\theta} + Mgl\cos\theta$$
 Recall: $\dot{\phi} = \frac{b - a\cos\theta}{\sin^2\theta}$

Rescaling our energies: $\alpha = 2E'/I_1$ and $\beta = 2Mgl/I_1$, we have,

$$\alpha = \dot{\theta}^2 + \frac{\left(b - a\cos\theta\right)^2}{\sin^2\theta} + \beta\cos\theta$$

Then, defining a new variable $u = \cos \theta$, we can transform the equation into ...

$$\dot{u}^2 = (1 - u^2)(\alpha - \beta u) - (b - au)^2$$

In order to do that we will start with the energy equation again,

$$E' = \frac{I_1}{2}\dot{\theta}^2 + \frac{I_1}{2}\frac{(b - a\cos\theta)^2}{\sin^2\theta} + Mgl\cos\theta$$
 Recall: $\dot{\phi} = \frac{b - a\cos\theta}{\sin^2\theta}$

Rescaling our energies: $\alpha = 2E'/I_1$ and $\beta = 2Mgl/I_1$, we have,

$$\alpha = \dot{\theta}^2 + \frac{\left(b - a\cos\theta\right)^2}{\sin^2\theta} + \beta\cos\theta$$

Then, defining a new variable $u = \cos \theta$, we can transform the equation into ...

$$\dot{u}^2 = (1 - u^2)(\alpha - \beta u) - (b - au)^2$$

quick check...

With $u = \cos \theta$, we have the following relations,

$$\dot{u} = \sin\theta \,\dot{\theta} \quad \rightarrow \quad \dot{\theta} = \frac{\dot{u}}{\sin\theta} \qquad \qquad \sin^2\theta = 1 - u^2$$

Substituting them into our previous equation: $\alpha = \dot{\theta}^2 + \frac{(b - a\cos\theta)^2}{\sin^2\theta} + \beta\cos\theta$

$$\alpha = \frac{\dot{u}^2}{1 - u^2} - \frac{(b - au)^2}{1 - u^2} + \beta u$$

$$\alpha - \beta u = \frac{\dot{u}^2 - \left(b - au\right)^2}{1 - u^2}$$

$$\dot{u}^2 = (1 - u^2)(\alpha - \beta u) - (b - au)^2$$

Note: the four constants of motion:

$$\alpha \to E'$$
 $a \to p_{\psi}$ $\beta \to Mg$ $b \to p_{\phi}$

Now, with our initial conditions with the top spinning at $\theta = \theta_0 < \frac{\pi}{2}$ (as a fast top, i.e.,), $\omega_3 \gg \omega^*$ we would like to estimate the range of nutation.

With our initial conditions: $\theta(0) = \theta_0$, $\dot{\phi}(0) = \dot{\theta}(0) = 0$, and $\dot{\psi} \neq 0$

$$\oint \dot{\phi}(0) = \frac{b - a\cos\theta_0}{\sin^2\theta_0} = 0 \quad \Rightarrow \quad b = au_0$$

$$\dot{\phi}(0) = \dot{\theta}(0) = 0 \quad \Rightarrow \quad E' = Mgl\cos\theta_0 \quad \Rightarrow \quad \alpha = \beta u_0$$

$$E' = \frac{I_1}{2}\dot{\theta}^2 + \frac{I_1}{2}\dot{\phi}^2 + Mgl\cos\theta$$

$$\alpha = 2E'/I_1$$

$$\beta = 2Mgl/I_1$$

With the energy conservation equation:

$$\dot{u}^2 = (1 - u^2)(\alpha - \beta u) - (b - au)^2$$

Substitute in $b = au_0$ and $\alpha = \beta u_0$ (ICs) into the above equation, we have,

$$\dot{u}^{2} = (1 - u^{2})(\beta u_{0} - \beta u) - (au_{0} - au)^{2}$$

$$= (1 - u^{2})\beta(u_{0} - u) - a^{2}(u_{0} - u)^{2}$$

$$u = \cos \theta$$

$$\dot{u}^2 = (u_0 - u) \left[\beta (1 - u^2) - a^2 (u_0 - u) \right] = f(u)$$
 Governing eq for nutations

For turning points (equilibrium points), the RHS f(u) must equal to zero. We already know $u = u_0$ is a solution (our IC). The other solution u_1 must come from

$$(1-u^2)-\frac{a^2}{\beta}(u_0-u)=0$$
 specifically, $(1-u_1^2)-\frac{a^2}{\beta}(u_0-u_1)=0$

Now, adding and subtracting u_0^2 and $2u_0u_1$, we can rewrite the previous eq,

$$u_0^2 - 2u_0u_1 - (1 - u_1^2) + \frac{a^2}{\beta}(u_0 - u_1) - 2u_0^2 + 2u_0u_1 + u_0^2 = 0$$

$$u_0^2 - 2u_0u_1 + u_1^2 - 1 + \frac{a^2}{\beta}(u_0 - u_1) - 2u_0^2 + 2u_0u_1 + u_0^2 = 0$$

Now, adding and subtracting u_0^2 and $2u_0u_1$, we can rewrite the previous eq,

$$u_0^2 - 2u_0u_1 - (1 - u_1^2) + \frac{a^2}{\beta}(u_0 - u_1) - 2u_0^2 + 2u_0u_1 + u_0^2 = 0$$

$$u_0^2 - 2u_0u_1 + u_1^2 - 1 + \frac{a^2}{\beta}(u_0 - u_1) - 2u_0^2 + 2u_0u_1 + u_0^2 = 0$$

$$(u_0 - u_1)^2 + \frac{a^2}{\beta}(u_0 - u_1) - 2u_0(u_0 - u_1) - (1 - u_0^2) = 0$$

$$(u_0 - u_1)^2 + \left(\frac{a^2}{\beta} - 2u_0\right)(u_0 - u_1) - (1 - u_0^2) = 0$$

Defining $x = u_0 - u$ and $\hat{x} = u_0 - u_1$ as the (max) range of nutation,

$$(u_0 - u_1)^2 + \left(\frac{a^2}{\beta} - 2u_0\right)(u_0 - u_1) - (1 - u_0^2) = 0$$
 can be written as,

$$\widehat{x}^{2} + \left(\frac{a^{2}}{\beta} - 2u_{0}\right)\widehat{x} - \left(1 - u_{0}^{2}\right) = 0$$

$$\widehat{x}^{2} + \left(\frac{a^{2}}{\beta} - 2\cos\theta_{0}\right)\widehat{x} - \left(1 - \cos^{2}\theta_{0}\right) = 0$$

By solving the above quadratic equation for \hat{x} , we can get an estimate for the max range of the nutation.

Nutation for a "Fast" Top

Now, applying the "fast" top condition, $\omega_3 \gg \frac{2}{I_2} \sqrt{I_1 Mgl \cos \theta_0} = \omega^*$

or
$$\frac{1}{2}(I_3\omega_3)^2\gg I_1Mgl\cos\theta_0$$
 $\left(KE_{rot}\gg PE_{gravity}\right)$
For an initially small tilt $(\cos\theta_0\simeq 1 \text{ or } \theta_0\simeq 0^\circ)$, this condition implies that

$$\frac{a^2}{\beta} = \left(\frac{I_3}{I_1}\right) \frac{I_3 \omega_3^2}{2Mgl} \gg 1 \qquad \Longrightarrow \qquad \frac{a^2}{\beta} - 2\cos\theta_0 \cong \frac{a^2}{\beta}$$

$$a = I_3 \omega_3 / I_1$$
$$\beta = 2Mgl / I_1$$

Nutation for a "Fast" Top

Now back to the equation for the max range of nutation \hat{x} ,

$$\widehat{x}^2 + \left(\frac{a^2}{\beta} - 2\cos\theta_0\right)\widehat{x} - \sin^2\theta_0 = 0$$

Assuming \widehat{x} to be small and dropping the \widehat{x}^2 term and with $\frac{a^2}{\beta} - 2\cos\theta_0 \cong \frac{a^2}{\beta}$

$$\widehat{x}^2 + \left(\frac{a^2}{\beta} - 2\cos\theta_0\right)\widehat{x} - \sin^2\theta_0 \quad \approx \frac{a^2}{\beta}\widehat{x} - \sin^2\theta_0 = 0$$

$$\Rightarrow \widehat{x} \simeq \frac{\beta}{a^2} \sin^2 \theta_0 = \frac{2I_1 Mgl}{\left(I_3 \omega_3\right)^2} \sin^2 \theta_0 \quad (*)$$

Nutation for a "Fast" Top

$$\widehat{x} \simeq \frac{2I_1 Mgl}{\left(I_3 \omega_3\right)^2} \sin^2 \theta_0$$

From this solution, we can conclude that the maximum range of nutation will in general decrease as

$$\widehat{x} \sim \frac{1}{\omega_3^2}$$

Thus, the faster the top spun, the less is the nutation!

Frequency of Nutation for a "Fast" Top

For a "fast" top, we can also estimate the frequency of its nutation...

As, we have seen for a fast top, when ω_3 is large and the range of nutation \hat{x} is small so that $u = \cos \theta = \cos \theta_0 = u_0$:

$$1 - u^2 \simeq 1 - u_0^2 = 1 - \cos^2 \theta_0 = \sin^2 \theta_0$$

Also, using our expression for \hat{x} for a "fast" top, Eq. (*), $\left(\hat{x} = \frac{\beta}{a^2} \sin^2 \theta_0\right)$

$$\beta (1 - u^2) = \beta \sin^2 \theta_0 = a^2 \hat{x}$$

Frequency of Nutation for a "Fast" Top

Substituting $\beta(1-u^2) \approx a^2 \hat{x}$ into our expression for f(u), and converting u into x, i.e., $x = u_0 - u$, we have,

$$f(u) = \dot{u}^2 = (u_0 - u) \left[\beta \left(1 - u^2 \right) - a^2 \left(u_0 - u \right) \right]$$

$$f(u) = \dot{x}^2 = x \left[a^2 \hat{x} - a^2 x \right] = a^2 x \left(\hat{x} - x \right) = a^2 \left(-x^2 + x \hat{x} \right)$$

Letting $y = x - \frac{x}{2}$ (shifting origin to the mid-range of the nutation), we have,

$$\dot{y}^2 = a^2 \left(-x^2 + x\hat{x} - \frac{\hat{x}^2}{4} + \frac{\hat{x}^2}{4} \right) = a^2 \left(-\left(x - \frac{\hat{x}}{2}\right)^2 + \frac{x^2}{4} \right)$$

$$\dot{y}^2 = a^2 \left(-y^2 + \frac{\hat{x}^2}{4} \right)$$

Frequency of Nutation for a "Fast" Top

Upon differentiation, this differential equation reads,

$$\frac{d}{dt}\left[\dot{y}^2 = a^2\left(-y^2 + \frac{\hat{x}^2}{4}\right)\right] \longrightarrow 2\dot{y}\ddot{y} = -a^2\left(2y\dot{y}\right)$$

Simplifying, we immediately get our desired result

$$\ddot{y} = -a^2 y$$

This describes a harmonic motion for the nutation as measured with respect to the mid-point of its range and the frequency of oscillation is,

$$a = \frac{I_3}{I_1} \omega_3 \left(= p_{\psi} \right)$$

So, the frequency of nutation is faster if the top is spun faster initially $(\omega_3 \uparrow)$.